Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1298: 342419, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462343

RESUMO

BACKGROUND: As a potential natural active substance, natural biologically active peptides (NBAPs) are recently attracting increasing attention. The traditional proteolysis methods of obtaining effective NBAPs are considerably vexing, especially since multiple proteases can be used, which blocks the exploration of available NBAPs. Although the development of virtual digesting brings some degree of convenience, the activity of the obtained peptides remains unclear, which would still not allow efficient access to the NBAPs. It is necessary to develop an efficient and accurate strategy for acquiring NBAPs. RESULTS: A new in silico scheme named SSA-LSTM-VD, which combines a sparrow search algorithm-long short-term memory (SSA-LSTM) deep learning and virtually digested, was presented to optimize the proteolysis acquisition of NBAPs. Therein, SSA-LSTM reached the highest Efficiency value reached 98.00 % compared to traditional machine learning algorithms, and basic LSTM algorithm. SSA-LSTM was trained to predict the activity of peptides in the proteins virtually digested results, obtain the percentage of target active peptide, and select the appropriate protease for the actual experiment. As an application, SSA-LSTM was employed to predict the percentage of neuroprotective peptides in the virtual digested result of walnut protein, and trypsin was ultimately found to possess the highest value (85.29 %). The walnut protein was digested by trypsin (WPTrH) and the peptide sequence obtained was analyzed closely matches the theoretical neuroprotective peptide. More importantly, the neuroprotective effects of WPTrH had been demonstrated in nerve damage mouse models. SIGNIFICANCE: The proposed SSA-LSTM-VD in this paper makes the acquisition of NBAPs efficient and accurate. The approach combines deep learning and virtually digested skillfully. Utilizing the SSA-LSTM-VD based strategy holds promise for discovering and developing peptides with neuroprotective properties or other desired biological activities.


Assuntos
Peptídeo Hidrolases , Peptídeos , Animais , Camundongos , Tripsina , Algoritmos , Aprendizado de Máquina , Digestão
2.
Sci Total Environ ; 884: 163750, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121326

RESUMO

Biomass-based adsorbents are considered to have great potential for CO2 capture due to their low cost, high efficiency and exceptional sustainability. The aim of this work is to design a simple method for preparing biomass-based adsorbents with abundant active sites and large numbers of narrow micropores, so as to enhance CO2 capture performance. Herein, N, S co-doped porous carbon (NSPC) was created utilizing walnut shell-based microporous carbon (WSMC) as the main framework and thiourea as N/S dopant through physical grinding and post-treatment process at a moderate temperature without any other reagents and steps. By altering the post-treatment parameters, a series of porous carbons with varying physico-chemical properties were prepared to discuss the roles of microporosity and N/S functional groups in CO2 adsorption. NSPC with narrow micropore volume of 0.74 cm3 g-1, N content of 4.89 % and S contents of 0.71 % demonstrated the highest CO2 adsorption capacity of 7.26 (0 °C) and 5.51 mmol g-1 (25 °C) at 1 bar. Meanwhile, a good selectivity of binary gas mixture CO2/N2 (15/85) of 29.72 and outstanding recyclability after ten cycles of almost 100 % adsorption capacity retention were achieved. The proposed post-treatment method was beneficial in maintaining the narrow micropores and forming N/S active sites, which together improve the CO2 adsorption performance of NSPC. The novel NSPC displays amazing CO2 adsorption characteristics, and the practical, affordable synthetic approach exhibits significant potential to produce highly effective CO2 adsorbents on a broad scale.


Assuntos
Dióxido de Carbono , Carbono , Carbono/química , Dióxido de Carbono/química , Porosidade , Biomassa , Temperatura
3.
ACS Appl Mater Interfaces ; 12(50): 55913-55925, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33272010

RESUMO

Energy shortage and wasting of resources are two main challenges for human society. To solve these problems, nitrogen-doped porous carbon was synthesized through a simple thermally induced phase separation (TIPS) method with subsequent carbonization and activation with biomass konjac/polyacrylonitrile composites as the raw materials and nitrogen source for the first time. The obtained composite carbon with hierarchical porosity, large specific surface areas, and high content of nitrogen doping shows promise due to its desirable electrochemical performance. Nitrogen-doped porous carbon exhibits a high specific capacitance of 390 F g-1 in a three-electrode system and a good rate characteristic with 70% capacitance retention at 20 A g-1. Excellent stabilization was observed with only a 4.5% capacitance decay under 10 000 cycles at 5 A g-1. The practical application of the composite porous carbon on flexible symmetrical supercapacitors was evaluated, showing a maximum energy density of 9.0 W h kg-1 when the power density was 250.2 W kg-1. More importantly, the fabricated flexible supercapacitor could still keep an excellent supercapacitor performance under bending and shows only a slight capacitance loss of 9% even after 1000 cycles (180°) of repetitive bending. The current study promotes the development of nitrogen-doped carbon materials on flexible energy storage devices.

4.
Nanoscale ; 12(28): 15261-15274, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32643739

RESUMO

The controlled design and synthesis of porous carbons with anticipated microstructures and morphologies, and a high specific surface area (SSA) have been focused on for supercapacitor development. Here, hierarchical porous carbons (HPCs) with an interconnected three-dimensional morphology derived from a natural-based bacterial cellulose (BC) composite have been successfully prepared by thermally induced phase separation of poly(ethylene-co-vinyl alcohol) (EVOH) and subsequent carbonization/activation. The SSA and porous architectures can be controlled by fine-tuning the preparation conditions such as the precursor morphology and structure, activator dosage and activation temperature, and the relationships between the super-capacitive properties and the SSA and pore size distribution have been further investigated. The obtained porous carbon material possesses a hierarchical porous structure with moderate micropores, favorable mesopores, interconnected macropores, a high SSA of 2161 m2 g-1 and a maximum oxygen-dopant content of 9.99%, enabling an increase in the active materials utilization efficiency and wettability. Due to the synergistic effects of these features, the obtained porous carbon electrode used in a supercapacitor shows a high specific capacitance of 420 F g-1 at 0.5 A g-1, excellent rate performance with 75% capacitance retention at 20 A g-1, and good cycling stability with ∼96.1% retention even after 10 000 continuous charge-discharge cycles at 5 A g-1. Additionally, the assembled supercapacitor based on porous carbon displays a moderate energy density of 20 W h kg-1. The good electrochemical performance and facile effective synthesis of bio-derived carbon materials with tunable porous structures indicate promising applications in supercapacitors.


Assuntos
Carbono , Celulose , Capacitância Elétrica , Eletrodos , Porosidade
5.
Carbohydr Polym ; 227: 115346, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590873

RESUMO

This study reports excellent supercapacitor performance of hierarchical composite porous carbon (HPC) materials successfully fabricated by one-step carbonization and activation process derived from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid. The resultant HPC displayed unique porous nanosheet morphology with high specific surface area (2490 m2 g-1) and rich oxygen content (7.3%). The developed structures with macropores, mesopore walls, micropores, and high oxygen content led to excellent electrochemical performance for electrode of electric double-layer capacitors (EDLCs). In a three-electrode system, the HPC electrode showed a high specific capacitance of 350 F g-1, good rate performance, and excellent cycling stability. The energy density of supercapacitor based on HPC was comparable to or higher than that of commercially supercapacitors. More importantly, two series-wound devices were easy to light light-emitting diode (LED, 3.0 V). These results suggest that the current material is a promising candidate for low-cost and eco-friendly energy storage devices.


Assuntos
Celulose/química , Ácido Cítrico/química , Capacitância Elétrica , Polissacarídeos Bacterianos/química , Carbono/química , Fontes de Energia Elétrica , Eletrodos , Porosidade
6.
Polymers (Basel) ; 10(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30961026

RESUMO

Ecological and environmental damage caused by oil spillage has attracted great attention. Used cigarette filters (CF) have also caused negative environmental consequences. Converting CF to economical materials is a feasible way to address these problems. In this study, we demonstrate a simple method for production of a highly hydrophobic absorbent from CF. CF was modified by using different volume ratios of octadecyltrichlorosilane and methyltrimethoxysilane. When the volume ratio was 3:2, the modified CF had the high water contact angle of 155°. It could selectively and completely absorb silicone oil from an oil-water mixture and showed a good absorption capacity of 38.3 g/g. The absorbed oil was readily and rapidly recovered by simple mechanical squeezing, and it could be reused immediately without any additional treatments. The as-obtained superhydrophobic modified CF retained an absorption capacity of 80% for pump oil and 82% for silicone oil after 10 cycles. The modified CF showed good elasticity in the test of repeated use. The present study provides novel design of a functional material for development of hydrophobic absorbents from used CF via a facile method toward oil spillage cleanup, as well as a new recycling method of CF to alleviate environmental impacts.

7.
RSC Adv ; 8(14): 7599-7605, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539128

RESUMO

Amygdalus pedunculata is expected to be a good candidate plant for desert reclamation ("greening") since it has notable tolerance to cold and drought and can grow in a wide range of areas with different soil types and moisture contents. In this study, we have developed a single-step method to fabricate a cellulose acetate (CA)/A. pedunculata shell (APS)-derived activated carbon (AC) composite monolith by thermally induced phase separation (TIPS) for removal of toxic phenol from aqueous solution. The composite monolith was easily fabricated by TIPS of a CA solution in the presence of the dispersed AC, in which AC was well loaded onto the monolithic skeleton of CA. The as-obtained monolith showed a maximum adsorption capacity of 45 mg g-1 at the initial phenol concentration of 0.8 mg mL-1. The present composite can be prepared with an arbitrary shape by a facile method from cheap materials, and is more convenient to recycle than powder adsorbents. Therefore, the present CA/APS-derived AC composite monolith has great potential as a promising adsorbent of low cost with convenient separation for toxic phenol-containing wastewater.

8.
Carbohydr Polym ; 157: 429-437, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987947

RESUMO

Recently, monoliths with continuous porous structure have received much attention for high-performance separation/adsorption matrix in biomedical and environmental fields. This study proposes a novel route to prepare cellulose monoliths with hierarchically porous structure by selecting cellulose acetate (CA) as the starting material. Thermally induced phase separation of CA solution using a mixed solvent affords a CA monolith, which is converted into the cellulose monolith by alkaline hydrolysis. Scanning electron microscopy images of the CA and cellulose monoliths reveal a continuous macropore with rough surface, and nitrogen adsorption/desorption analysis indicates the formation of a mesoporous structure. The macroporous structure could be controlled by changing the fabrication parameters. A series of reactive groups are introduced by chemical modifications on the surface of the cellulose monolith. The facile and diverse modifiability combined with its hydrophilic property make the hierarchically porous cellulose monolith a potential platform for use in separation, purification and bio-related applications.


Assuntos
Celulose/análogos & derivados , Porosidade , Adsorção , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...